Reference
Hurst.generalised_hurst_exponent
Hurst.generalised_hurst_range
Hurst.hurst_exponent
Hurst.zeta_estimator_range
Hurst.generalised_hurst_exponent
— Methodgeneralised_hurst_exponent(X, τ_range, q)
Calculate the generalised Hurst exponent of the series X
with absolute moment q
over the range τ_range
along with its standard error.
See also hurst_exponent
.
Examples
julia> X = accumulate(+, randn(1000));
julia> generalised_hurst_exponent(X, 1:19, 0.5);
Hurst.generalised_hurst_range
— Methodgeneralised_hurst_range(X, τ_range, q_range)
Calculate the generalised Hurst exponent (GHE) of the series X
with absolute moments q_range
over the range τ_range
, along with its standard error.
Returns a (length(q_range), 2)
matrix where the first column contains the values of the GHE and the second column contains the standard errors.
See also hurst_exponent
.
Examples
julia> X = accumulate(+, randn(1000));
julia> q_range = 0.:0.1:1.; tau_range = 1:19;
julia> generalised_hurst_range(X, tau_range, q_range);
Hurst.hurst_exponent
— Methodhurst_exponent(X, τ_range)
Calculate the Hurst exponent of the series X
over the range τ_range
along with its standard error.
Examples
julia> X = accumulate(+, randn(1000));
julia> isapprox(hurst_exponent(X, 1:19)[1], 0.5, atol = 0.1)
true
Hurst.zeta_estimator_range
— Methodzeta_estimator_range(X, τ_range, q_range)
Calculate $\zeta (q)$ that satifies:
$\ln \left(E\left[|X(t+\tau)-X(t)|^q\right] ight)=\zeta(q) \ln (\tau)+\ln (K(q))$
for some series $X(t)$, over the vector q_range
.
Returns a (length(q_range), 2)
matrix where the first column contains the values of the $\zeta(q)$ for different q
and the second column contains the standard errors.
See also hurst_exponent
.