Reference
Hurst.generalised_hurst_exponentHurst.generalised_hurst_rangeHurst.hurst_exponentHurst.zeta_estimator_range
Hurst.generalised_hurst_exponent — Methodgeneralised_hurst_exponent(X, τ_range, q)Calculate the generalised Hurst exponent of the series X with absolute moment q over the range τ_range along with its standard error.
See also hurst_exponent.
Examples
julia> X = accumulate(+, randn(1000));
julia> generalised_hurst_exponent(X, 1:19, 0.5);Hurst.generalised_hurst_range — Methodgeneralised_hurst_range(X, τ_range, q_range)Calculate the generalised Hurst exponent (GHE) of the series X with absolute moments q_range over the range τ_range, along with its standard error.
Returns a (length(q_range), 2) matrix where the first column contains the values of the GHE and the second column contains the standard errors.
See also hurst_exponent.
Examples
julia> X = accumulate(+, randn(1000));
julia> q_range = 0.:0.1:1.; tau_range = 1:19;
julia> generalised_hurst_range(X, tau_range, q_range);Hurst.hurst_exponent — Methodhurst_exponent(X, τ_range)Calculate the Hurst exponent of the series X over the range τ_range along with its standard error.
Examples
julia> X = accumulate(+, randn(1000));
julia> isapprox(hurst_exponent(X, 1:19)[1], 0.5, atol = 0.1)
trueHurst.zeta_estimator_range — Methodzeta_estimator_range(X, τ_range, q_range)Calculate $\zeta (q)$ that satifies:
$\ln \left(E\left[|X(t+\tau)-X(t)|^q\right] ight)=\zeta(q) \ln (\tau)+\ln (K(q))$
for some series $X(t)$, over the vector q_range.
Returns a (length(q_range), 2) matrix where the first column contains the values of the $\zeta(q)$ for different q and the second column contains the standard errors.
See also hurst_exponent.